[image: image1.jpg]THE QUORIDOR. TEAM
||

Coding Specifications

and Conventions

Client: Steve Klein

Southern Illinois University Edwardsville

Group Members:

Aaron O’Banion

Todd Astroth

Mark Williams

Chris Cobb

Matt Stowe

Table of Contents

31.) Introduction

32.) Standards and Conventions

32.1) Naming Design Components

32.2) Same Subroutine for Multiple Events

32.3) Sequential Naming For Related Components

42.4) Commenting Code

42.5) Team Member Changes to Code

43.) Contributions

1.) Introduction
The purpose of this document is to describe the standards and conventions used to write code for the Quoridor program. These rules will help improve the consistency and readability of the code in general. The Quoridor Team has chosen Visual Basic .NET as the main programming language for this project.

2.) Standards and Conventions
2.1) Naming Design Components
Components declared in the form designer will be named with a set of predefined prefixes, each standing for a different component.
Form = frm-

Text Box = txt-

Radio Button = rdo- / rad-

Label = lbl-

Group Box = grp- / gbx-

Button = btn-

Checkbox = chk-

Panel = pnl-

Picture Box = pb- / pbx-

Combo Box = cbo-
2.2) Same Subroutine for Multiple Events

When more than one event activates the same subroutine of code, that one subroutine will handle multiple events. This will cut down on the amount of duplicate code. For example this subroutine header handles three different clicking events:

Private Sub BlueStrt_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles BlueStrt.Click, lblP2goalLEFT.Click, lblP2goalRIGHT.Click
2.3) Sequential Naming For Related Components
When items are related in number, they will be named similarly. The number will be the only change in the name. For example, for each player on the Player Setup Screen, we have text boxes for each player’s name: txtP1Name, txtP2Name, txtP3Name, txtP4Name.
2.4) Commenting Code
Major functions will include a commented line above the header. This will give a brief statement describing what the function does. Also, when necessary, statements may have an in-line comment describing the line of code in more detail. For example, the Help Menu uses a built-in function to replace any instance of “\n” with a carriage return:

'Replace \n with newline
str = str.Replace("\n", Chr(13) & Chr(10))
2.5) Team Member Changes to Code
When team members test and debug a version of the program, it is encouraged that the members use comments to indicate lines of code that they have changed. The comments would be located near the lines changed, and they would contain the coder’s initials in parentheses followed by an explanation of what they changed in the code. The purpose of this process is to reduce the amount of time needed to implement version updating. For example, if John Smith changes two lines of code, he would write a comment like this:
''' (JS) Changed 2 lines below.
3.) Contributions

Coding Specifications:

Todd Astroth
